Genome-wide profiling of DNA methylation in human cancer cells.

نویسندگان

  • Katsumi Ogoshi
  • Shin-Ichi Hashimoto
  • Yoichiro Nakatani
  • Wei Qu
  • Kenshiro Oshima
  • Katsushi Tokunaga
  • Sumio Sugano
  • Masahira Hattori
  • Shinichi Morishita
  • Kouji Matsushima
چکیده

Global changes in DNA methylation correlate with altered gene expression and genomic instability in cancer. We have developed a methylation-specific digital sequencing (MSDS) method that can assess DNA methylation on a genomic scale. MSDS is a simple, low-cost method that combines the use of methylation-sensitive restriction enzymes with second generation sequencing technology. DNA methylation in two colon cancer cell lines, HT29 and HCT116, was measured using MSDS. When methylation levels were compared between the two cell lines, many differentially methylated regions (DMRs) were identified in CpG island shore regions (located within 2kb of a CpG island), gene body regions and intergenic regions. The number of DMRs in the vicinity of gene transcription start sites correlated with the level of expression of TACC1, CLDN1, and PLEKHC1 (FERMT2) genes, which have been linked to carcinogenesis. The MSDS method has the potential to provide novel insight into the functional complexity of the human genome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting CpG Islands and DNA Methlation in the Cow Genome Using DNA Microarray Meta-Analysis and Genome Wide Scanning

DNA methylation is a type of epigenetic changes that directly affects DNA. In mammals, DNA methylation is essential for fetal development and stem cell differentiation and this phenomenon essentially occurs within the CpG islands. In this study, two methods were used to study the DNA methylation profile of cow genome. In the first method, the DNA methylation profile of the differentially expres...

متن کامل

I-44: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...

متن کامل

O-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...

متن کامل

Post-translational changes of histones, methylation level, and ERβ protein level in the cumulus cell genome of infertile women with endometriosis

Background: Endometriosis (which affects up to 50% of infertile women) is one of the major causes impacting female infertility. Endometriosis, defined as the presence of endometrial glands and stroma outside the uterine tissue, causes a wide range of functional disorders in the process of follicular development and changes in the follicular milieu, resulting in the formation of an incompetent o...

متن کامل

اپی‌ژنتیک سرطان پستان: مقاله مروری

Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genomics

دوره 98 4  شماره 

صفحات  -

تاریخ انتشار 2011